
Lazy Evaluation

Here are some new Scheme expressions:

• (delay exp) returns an object called a
promise, without evaluating exp.

• (force promise) evaluates the promised
expression and returns its value.

If a promised expression has been evaluated
once, forcing it again returns its value without
re-evaluating it.

For example
> (define foo

(delay
(begin

(display "Oh, goody I'm being evaluated!\n")
2)))

> (force foo) => Oh goody I'm being evaluated!
2

> (force foo) => 2
> (force foo) => 2

Another example:
> (define d (+ z 3)) => error: z is undefined
> (define d (delay (+ z 3)))
> (define z 5)
> (force d) => 8
> (define z 23)
> (force d) => 8

Now, how could we implement delay and force?

The only place in standard Scheme where we can
give an expression without immediately evaluating
it is in the body of a lambda expression.

Try this:

> (define d (lambda () (+ x 5)))
> (define x 23)
> (d)

A lambda expression with no arguments is a
wrapper that delays evaluation; such a lambda
expression is sometimes called a thunk.

To avoid re-evaluating the delayed expression, we can store the
expression's value in an internal environment and just return it
when we need it --

(delay exp)
is equivalent to

(let ([thunk (lambda () exp)]
[value 0]
[evaluated? #f])

(lambda ()
(if (not evaluated)

(begin
(display "evaluating\n")
(set! value (thunk))
(set! evaluated? #t)
value))

value)))

We can then define (force promise) as (promise)

Note that (delay exp) cannot be defined as a
procedure, since

(f exp)
always evaluates exp.

delay is created as a type of expression through
define-syntax.

